德国物理学家赫兹生平简介 赫兹的贡献成就有哪些?
德国物理学家赫兹生平简介 赫兹的贡献成就有哪些?
德国物理学家赫兹生平简介:赫兹的经历是怎样的?赫兹的贡献成就有哪些?本文这就为你介绍:
德国物理学家赫兹生平简介
海因里希·鲁道夫·赫兹(Heinrich Rudolf Hertz,1857年2月22日-1894年1月1日),德国物理学家,于1888年首先证实了电磁波的存在。并对电磁学有很大的贡献,故频率的国际单位制单位赫兹以他的名字命名。
赫兹的经历
一、天才出世
1857年(丁巳年)2月22日赫兹出生在德国汉堡一个改信基督教的犹太家庭。父亲是汉堡城的一名顾问,母亲是一位医生的女儿。
二、求学经历
在他去柏林大学就读之前就已经展现出良好的科学和语言天赋,喜欢学习阿拉伯语和梵文。
他曾经在德国德累斯顿、慕尼黑和柏林等地学习科学和工程学。他是古斯塔夫·基尔霍夫和赫尔曼·范·亥姆霍兹的学生。1880年赫兹获得博士学位,但继续跟随亥姆霍兹学习,直到1883年他收到来自基尔大学出任理论物理学讲师的邀请。
三、婚姻生活
一八八五年三月,赫兹转到德国西南部边境的卡尔斯鲁尔(Karlsruhe)技术学院,担任物理系教授。又开始装配他的电学实验室,并且在上课时示范电学实验。
他说:“我不相信一个人只由理论,就可以知道实际。”
小学校的实验经费少得可怜,他却一点一滴造出一间精密的电磁实验室。系上教三角学的多尔(MaxDoll)教授很欣赏他,知道这个年轻人身上有一种不与人比较的风骨;他请赫兹来家里坐坐,把女儿伊利沙白(ElisabethDoll)介绍给他。
伊利沙白后来写下:“赫兹在星光下有一种近乎骄傲的自信。他自认是全世界唯一了解星光是什么的人,在他看来满天的星光是不同的光体,规律地发出不同频率的电磁波来到地上…… 在他的说明中,星夜不只是美丽的,而且是规则准确的。”
赫兹的自信没有错,十九世纪全世界最懂电磁波实验的有两人,一位是法拉第(Michael Faraday),另一位就是赫兹。
伊利沙白不懂电磁波,但是她知道这位寻求科学之真的男士,心里也是一片真诚与率直。他们认识不到四个月就结婚,当时赫兹二十九岁。
赫兹找到爱情的归宿,并展开他一生最着名的研究。因为这一实验研究的成功,后来纽约物理系教授薛默士(Morris H.Shamos)回顾历史上物理学家,由伽利略到爱因斯坦,他认为最伟大的物理实验家就是赫兹。赫兹以实验证明人类千古的谜团--光的本质是电磁波。
赫兹是怎么死的?
1894年37岁的赫兹因为败血症在波恩英年早逝。他的侄子古斯塔夫·路德维格·赫兹是诺贝尔奖获得者,古斯塔夫的儿子卡尔·海尔莫斯·赫兹创立了超声影像医学。
在1892年,赫兹被诊断出感染了韦格纳肉芽肿(发病时会经历剧烈的头痛),而他试着去治疗这种疾病。 在1894年,赫兹在德国波恩不幸离世,享年36岁,他死后被埋在Ohlsdorf汉堡的犹太墓地。
赫兹死后留下了他的妻子伊丽莎白‧赫兹(原名:伊丽莎白‧道欧)和两名女儿乔安娜和玛蒂尔德。 而他的妻子在他死后并没有改嫁。
1930那年代,希特勒崛起,他的妻子和两名女儿也从德国搬到英国。 1960年,查尔斯萨‧斯坎德拜访了玛蒂尔德‧赫兹,询问有关她父亲的事,并在不久之后出版了一本有关海因里希‧赫兹的书。根据查尔斯萨的书指出,赫兹的两名女儿都没有结婚,因此他没有任何后裔。
赫兹的贡献成就
一、赫兹实验
赫兹对人类文明作出了很大贡献,正当人们对他寄以更大期望时,他却于1894年元旦因血中毒逝世,年仅36岁。为了纪念他的功绩,人们用他的名字来命名各种波动频率的单位,简称“赫”。
赫兹也是国际单位制中频率的单位,它是每秒中的周期性变动重复次数的计量。赫兹的名字来自于德国物理学家海因里希·鲁道夫·赫兹。其符号是Hz。电(电压或电流),有直流和交流之分。
在通信应用中,用作信号传输的一般都是交流电。呈正弦变化的交流电信号,随着时间的变化,其幅度时正、时负,以一定的能量和速度向前传播。
通常,我们把上述正弦波幅度在1秒钟内的重复变化次数称为信号的“频率”,用f表示;而把信号波形变化一次所需的时间称作“周期”,用T表示,以秒为单位。
波行进一个周期所经过的距离称为“波长”,用λ表示,以米为单位。f、T和λ存在如下关系: f=1/T ,v=λ.f ,其中,v是电磁波的传播速度,等于3x10^8米/秒。频率的单位是赫兹,简称赫,以符号Hz表示。
赫兹(H·Hertz)是德国著名的物理学家,1887年,是他通过实验证实了电磁波的存在。后人为了纪念他,把“赫兹”定为频率的单位。常用的频率单位还有千赫(KHz)、兆赫(MHz)、吉赫(GHz)等。
在载带信息的电信号中,有时会包含多种频率成分;将所有这些成分在频率轴上的位置标示出来,并表示出每种成分在功率或电压上的大小,这就是信号的“频谱”。它所占据的频率范围就叫做信号的频带范围。
二、波动方程
海因里希·鲁道夫·赫兹(Heinrich Rudolf Hertz)在1886年至1888年间首先通过试验验证了麦克斯韦尔的理论。他证明了无线电辐射具有波的所有特性,并发现电磁场方程可以用偏微分方程表达,通常称为波动方程。
1887年11月5日,赫兹在寄给亥姆霍兹一篇题为《论在绝缘体中电过程引起的感应现象》的论文中,总结了这个重要发现。
接着,赫兹还通过实验确认了电磁波是横波,具有与光类似的特性,如反射、折射、衍射等,并且实验了两列电磁波的干涉,同时证实了在直线传播时,电磁波的传播速度与光速相同,从而全面验证了麦克斯韦的电磁理论的正确性。
并且进一步完善了麦克斯韦方程组,使它更加优美、对称,得出了麦克斯韦方程组的现代形式。
此外,赫兹又做了一系列实验。他研究了紫外光对火花放电的影响,发现了光电效应,即在光的照射下物体会释放出电子的现象。这一发现,后来成了爱因斯坦建立光量子理论的基础。
1888年1月,赫兹将这些成果总结在《论动电效应的传播速度》一文中。赫兹实验公布后,轰动了全世界的科学界。由法拉第开创,麦克斯韦总结的电磁理论,至此才取得决定性的胜利。
1888年,成了近代科学史上的一座里程碑。赫兹的发现具有划时代的意义,它不仅证实了麦克斯韦发现的真理,更重要的是开创了无线电电子技术的新纪元。
随着迈克尔逊在1881年进行的实验和1887年的迈克尔逊-莫雷实验推翻了光以太的存在,赫兹改写了麦克斯韦方程组,将新的发现纳入其中。
通过实验,他证明电信号象詹姆士·麦克斯韦和迈克尔·法拉第预言的那样可以穿越空气,这一理论是发明无线电的基础。
他注意到带电物体当被紫外光照射时会很快失去它的电荷,发现了光电效应,后来由阿尔伯特·爱因斯坦给予解释。
三、光电效应
1、赫兹证明电磁波存在的实验
赫兹是亥姆霍兹的学生,在老师的影响和要求下,他深入研究了电磁理论。1879年,德国柏林科学院悬奖征解,向当时科学界征求对麦克斯韦电磁理论进行实验验证,促使年轻的赫兹萌发了进行电磁波实验的雄心壮志。
赫兹的实验装置一部分如。AA′是两块40厘米见方的铜板,焊上直径0.5厘米,长70厘米的铜棒,头上各接一小铜球,相对放置,球中间留有空隙约0.75厘米。
铜球表面仔细磨光,两棒分别接到感应圈的两端,当通电时,两棒之间产生放电,形成振荡。 再取2毫米粗的铜棒做成圆环,半径为35厘米,如中的B。
圆环的空隙f,宽度可用精密螺旋调节,从零点几毫米调到几毫米。当放在适当位置时,f间隙会跟随AA′产生火花放电,火花可长达6-7毫米。
B环可围绕平行于AA′面的法线mn旋转,旋转到不同位置,f放电的火花长度不一样。当f处于a或a′时,完全没有火花;转动些许角度,开始会产生火花;转至b或b′时,火花最大。
2、赫兹测出电磁波速度
赫兹最有说服力的实验是直接测出电磁波的传播速度。他用的装置如下:导体AA′(赫兹称之为原导体)在感应圈的激励下产生电磁波。AA′平面与地板垂直,在图中赫兹标了一条基线rs,下面是距离标记从离AA′中心点45厘米处计程。
实验在一间15×14米的大教室进行,在基线的12米内无任何家具。整个房间遮黑,以便观察放电火花。次回路就是那个半径为35厘米的圆环C或边长60厘米的方形导线框B。
根据麦克斯韦理论,已经知道这个速度大概是每秒3万公里,要直接测这样的速度是十分困难的。赫兹想起了20年前他的老师昆特(Kundt)用驻波测声速的方法,巧妙地设计了一个方案。
他在教室的墙壁上贴了一张4米高,2米宽的锌箔,并将锌箔与墙上所有的煤气管道、水管等联接,使电磁波在墙壁遭遇反射。前进波和反射波叠加的结果就会组成驻波。
根据波动理论,驻波的节距等于半波长,测出节点的位置就可以知道波长。 赫兹沿基线rs移动探测线圈,果然在不同的位置上火花隙的长度不一样。有的地方最强,这是波腹;有的地方最弱,甚至没有火花,这是波节。
根据电容器的振荡理论赫兹算得电磁振荡的周期。从光速就是电磁波的速度的假设和测得的波长也可算出周期,两者相差大约10%,赫兹证实了电磁波的速度就是光速。
3、观察到电磁波有聚焦、直进、反射、折射和偏振现象
为了进一步考察电磁波的性质,赫兹又设计了一系列实验,其中有聚焦、直进性、反射、折射和偏振。他用2米长的锌板弯成抛物柱面形,柱面的焦距大约为12.5厘米。
他把发射振子和接收振子分别安在两块柱面的焦线上,调整感应圈使发射振子产生电火花。当两柱面正好面对时,接收振子也会发出火花;位置离开就不产生效果,由此证明电磁波和光波一样也有聚焦和直进性的性质。
赫兹还用1.5米高重500千克的大块沥青做成三棱镜,让电磁波通过,和光一样电磁波也发生折射。他测得最小偏向角为22°,三棱镜的顶角是30°,由此算出沥青对电磁波的折射率是1.69。他还用"金属栅"显示了电磁波的偏振性。
在1888年12月13日向柏林科学院作了题为《论电辐射》的报告,他以充分的实验证据全面证实了电磁波和光波的同一性。他写道:"我认为这些实验有力地铲除了对光、辐射热和电磁波动之间的同一性的任何怀疑"。